Power of Poop: Identification and Analysis of Gut Microbiome Biomarkers in Diarrhea

Authors

  • Chenxi Hu Tabor Academy, 66 Spring Street, Marion, MA, USA, 02738

DOI:

https://doi.org/10.62051/aw8cvm49

Keywords:

Gut Microbiome, Diarrhea, Taxonomic Biomarkers, Functional Pathway, Machine Learning.

Abstract

The human gut microbiome, a vast collection of billions of bacteria in the gastrointestinal tract, plays a crucial role in maintaining host health through homeostasis. Diarrhea, which affects approximately 179 million people annually, significantly alters the gut microbiome. While infectious diarrhea is characterized by an increase in pathogens such as Escherichia coli, the changes in gut microbiome following non-infectious and chronic diarrhea remain unclear. Recent advances in metagenomic sequencing have enabled us to investigate the changes in gut microbiome. To identify biomarkers in diarrhea and characterize the gut microbiome, we integrated datasets from 12 published studies into a comprehensive dataset, comprising 1015 healthy samples and 2302 diarrhea-related disease samples, among which approximately 90% are non-infectious. Using linear regression model and machine learning, we identified microbial taxa enriched in healthy samples, including Bacteroides uniformis, Bacteroides vulgatus, Akkermansia muciniphila, Firmicutes bacterium, and Alistipes. In contrast, Flavonifractor plautii, E. coli, and Prevotella were more abundant and prevalent in diarrhea samples. For microbial function analysis, we found that pathways such as phytol degradation and aerobic respiration I (cytochrome C) were enriched in healthy samples, whereas other pathways including glycerol degradation, methanogenesis, isoprene biosynthesis, and taxadiene biosynthesis, were more commonly detected in diarrhea samples. We employed graph theory and inferred a denser but less stable network from diarrhea samples compared to the network of healthy controls. These results indicate that healthy and diarrhea gut microbiomes have distinct features characterizing diarrhea alterations. We anticipate that these biomarkers can be used for personalized dietary interventions and targeted, cost-effective diagnosis and treatments of diarrhea that consider complex gut microbiome interactions.

Downloads

Download data is not yet available.

References

[1] GBD Diarrhoeal Diseases Collaborators (2017). Estimates of global, regional, and national morbidity, mortality, and aetiologies of diarrhoeal diseases: a systematic analysis for the Global Burden of Disease Study 2015. The Lancet. Infectious diseases, 17(9), 909–948. https://doi.org/10.1016/S1473-3099(17)30276-1 DOI: https://doi.org/10.1016/S1473-3099(17)30276-1

[2] WHO. (n.d.). Diarrhoeal disease. World Health Organization. https://www.who.int/news-room/fact-sheets/detail/diarrhoeal-disease

[3] Johns Hopkins Medicine. (n.d.). Inflammatory bowel disease. Retrieved December 17, 2024, from https://www.hopkinsmedicine.org/health/conditions-and-diseases/inflammatory-bowel-disease

[4] Li, Y., Xia, S., Jiang, X., Feng, C., Gong, S., Ma, J., Fang, Z., Yin, J., & Yin, Y. (2021). Gut Microbiota and Diarrhea: An Updated Review. Frontiers in cellular and infection microbiology, 11, 625210. https://doi.org/10.3389/fcimb.2021.625210 DOI: https://doi.org/10.3389/fcimb.2021.625210

[5] Jovel, J., Patterson, J., Wang, W., Hotte, N., O'Keefe, S., Mitchel, T., ... & Wong, G. K. S. (2016). Characterization of the gut microbiome using 16S or shotgun metagenomics. Frontiers in microbiology, 7, 459. DOI: https://doi.org/10.3389/fmicb.2016.00459

[6] David, L. A., Weil, A., Ryan, E. T., Calderwood, S. B., Harris, J. B., Chowdhury, F., Begum, Y., Qadri, F., LaRocque, R. C., & Turnbaugh, P. J. (2015). Gut microbial succession follows acute secretory diarrhea in humans. mBio, 6(3), e00381-15. https://doi.org/10.1128/mBio.00381-15 DOI: https://doi.org/10.1128/mBio.00381-15

[7] Pasolli, E., Schiffer, L., Manghi, P., Renson, A., Obenchain, V., Truong, D. T., Beghini, F., Malik, F., Ramos, M., Dowd, J. B., Huttenhower, C., Morgan, M., Segata, N., & Waldron, L. (2017). Accessible, curated metagenomic data through ExperimentHub. Nature methods, 14(11), 1023–1024. https://doi.org/10.1038/nmeth.4468 DOI: https://doi.org/10.1038/nmeth.4468

[8] Dixon, P. (2003), VEGAN, a package of R functions for community ecology. Journal of Vegetation Science, 14: 927-930. https://doi.org/10.1111/j.1654-1103.2003.tb02228.x DOI: https://doi.org/10.1111/j.1654-1103.2003.tb02228.x

[9] Lahti, L., & Shetty, S. (2017). microbiome R package. Bioconductor. https://doi.org/10.18129/B9.bioc.microbiome

[10] Love, M.I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15, 550 (2014). https://doi.org/10.1186/s13059-014-0550-8 DOI: https://doi.org/10.1186/s13059-014-0550-8

[11] Fauziyyah, Nabiilah Ardini (2020). Classification using Microbiome. In Exploring microbiome analysis using R. https://microbiome.netlify.app/classification-using-microbiome

[12] Ianiro, G., Punčochář, M., Karcher, N., Porcari, S., Armanini, F., Asnicar, F., Beghini, F., Blanco-Míguez, A., Cumbo, F., Manghi, P., Pinto, F., Masucci, L., Quaranta, G., De Giorgi, S., Sciumè, G. D., Bibbò, S., Del Chierico, F., Putignani, L., Sanguinetti, M., Gasbarrini, A., … Segata, N. (2022). Variability of strain engraftment and predictability of microbiome composition after fecal microbiota transplantation across different diseases. Nature medicine, 28(9), 1913–1923. https://doi.org/10.1038/s41591-022-01964-3 DOI: https://doi.org/10.1038/s41591-022-01964-3

[13] Nakayama, J., Watanabe, K., Jiang, J. et al. Diversity in gut bacterial community of school-age children in Asia. Sci Rep 5, 8397 (2015). https://doi.org/10.1038/srep08397 DOI: https://doi.org/10.1038/srep08397

[14] Yan, Y., Lei, Y., Qu, Y. et al. Bacteroides uniformis-induced perturbations in colonic microbiota and bile acid levels inhibit TH17 differentiation and ameliorate colitis developments. npj Biofilms Microbiomes 9, 56 (2023). https://doi.org/10.1038/s41522-023-00420-5 DOI: https://doi.org/10.1038/s41522-023-00420-5

[15] Liu Liyun , Xu Mingchao , Lan Ruiting , Hu Dalong , Li Xianping , Qiao Lei , Zhang Suping , Lin Xiaoying , Yang Jing , Ren Zhihong , Xu Jianguo, Bacteroides vulgatus attenuates experimental mice colitis through modulating gut microbiota and immune responses, Frontiers in Immunology, vol. 13, 2022, https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2022.1036196, 10.3389/fimmu.2022.1036196 DOI: https://doi.org/10.3389/fimmu.2022.1036196

[16] Waidmann, M., Bechtold, O., Frick, J. S., Lehr, H. A., Schubert, S., Dobrindt, U., Loeffler, J., Bohn, E., & Autenrieth, I. B. (2003). Bacteroides vulgatus protects against Escherichia coli-induced colitis in gnotobiotic interleukin-2-deficient mice. Gastroenterology, 125(1), 162–177. https://doi.org/10.1016/s0016-5085(03)00672-3 DOI: https://doi.org/10.1016/S0016-5085(03)00672-3

[17] Cani, P.D., Depommier, C., Derrien, M. et al. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat Rev Gastroenterol Hepatol 19, 625–637 (2022). https://doi.org/10.1038/s41575-022-00631-9 DOI: https://doi.org/10.1038/s41575-022-00631-9

[18] Parker, B. J., Wearsch, P. A., Veloo, A. C. M., & Rodriguez-Palacios, A. (2020). The genus Alistipes: Gut bacteria with emerging implications to inflammation, cancer, and mental health. Frontiers in Immunology, 11, 906. https://doi.org/10.3389/fimmu.2020.00906

[19] Parker, B. J., Wearsch, P. A., Veloo, A. C. M., & Rodriguez-Palacios, A. (2020). The Genus Alistipes: Gut Bacteria With Emerging Implications to Inflammation, Cancer, and Mental Health. Frontiers in immunology, 11, 906. https://doi.org/10.3389/fimmu.2020.00906 DOI: https://doi.org/10.3389/fimmu.2020.00906

[20] Gupta, A., Dhakan, D. B., Maji, A., Saxena, R., P K, V. P., Mahajan, S., Pulikkan, J., Kurian, J., Gomez, A. M., Scaria, J., Amato, K. R., Sharma, A. K., & Sharma, V. K. (2019). Association of Flavonifractor plautii, a Flavonoid-Degrading Bacterium, with the Gut Microbiome of Colorectal Cancer Patients in India. mSystems, 4(6), e00438-19. https://doi.org/10.1128/mSystems.00438-19 DOI: https://doi.org/10.1128/msystems.00438-19

[21] Hao Chung The, Son-Nam H Le, Dynamic of the human gut microbiome under infectious diarrhea, Current Opinion in Microbiology, Volume 66, 2022, Pages 79-85, ISSN 1369-5274, https://doi.org/10.1016/j.mib.2022.01.006. DOI: https://doi.org/10.1016/j.mib.2022.01.006

[22] Larsen J. M. (2017). The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology, 151(4), 363–374. https://doi.org/10.1111/imm.12760 DOI: https://doi.org/10.1111/imm.12760

[23] J. Gloerich, D.M. van den Brink, J. P.N. Ruiter, N. van Vlies, F.M. Vaz, R. J.A. Wanders, S. Ferdinandusse,

[24] Metabolism of phytol to phytanic acid in the mouse, and the role of PPARα in its regulation, Journal of Lipid Research, Volume 48, Issue 1, 2007, Pages 77-85, ISSN 0022-2275, https://doi.org/10.1194/jlr.M600050-JLR200. DOI: https://doi.org/10.1194/jlr.M600050-JLR200

[25] Biebl, H., Menzel, K., Zeng, A. P., & Deckwer, W. D. (1999). Microbial production of 1,3-propanediol. Applied microbiology and biotechnology, 52(3), 289–297. https://doi.org/10.1007/s002530051523 DOI: https://doi.org/10.1007/s002530051523

[26] Das, S., & Dash, H. R. (2020). Microbial and Natural Macromolecules: Synthesis and Applications. Academic Press.

[27] Duller, S., & Moissl-Eichinger, C. (2024). Archaea in the Human Microbiome and Potential Effects on Human Infectious Disease. Emerging Infectious Diseases, 30(8), 1505-1513. https://doi.org/10.3201/eid3008.240181. DOI: https://doi.org/10.3201/eid3008.240181

[28] Kuzuyama, T., & Seto, H. (2012). Two distinct pathways for essential metabolic precursors for isoprenoid biosynthesis. Proceedings of the Japan Academy. Series B, Physical and biological sciences, 88(3), 41–52. https://doi.org/10.2183/pjab.88.41 DOI: https://doi.org/10.2183/pjab.88.41

[29] Qiulong Huang, Charles A Roessner, Rodney Croteau, A.Ian Scott, Engineering Escherichia coli for the synthesis of taxadiene, a key intermediate in the biosynthesis of taxol, Bioorganic & Medicinal Chemistry, Volume 9, Issue 9, 2001, Pages 2237-2242, ISSN 0968-0896, https://doi.org/10.1016/S0968-0896(01)00072-4. DOI: https://doi.org/10.1016/S0968-0896(01)00072-4

Downloads

Published

11-10-2025

How to Cite

Hu, C. (2025). Power of Poop: Identification and Analysis of Gut Microbiome Biomarkers in Diarrhea. Transactions on Materials, Biotechnology and Life Sciences, 8, 466-479. https://doi.org/10.62051/aw8cvm49