Deciphering the Neural Circuits of Consciousness: An Integrative Framework from Microcircuits to Global Networks

Authors

  • Jinhong Wu College of Design and Engineering, National University of Singapore, Singapore
  • Man Li School of Basic Medicine, Tongji Medical College, Key Laboratory of Neurological Diseases of Hubei Province and National Education Ministry, Huazhong University of Science and Technology, Wuhan 430030, China

DOI:

https://doi.org/10.62051/kh9n6s25

Keywords:

consciousness, circuit, disorders of consciousness, neuromodulation.

Abstract

Consciousness arises from dynamic cross-scale interactions, yet its neural substrates remain fragmented across spatiotemporal hierarchies. This review synthesizes pivotal advances from the past five years (2020-2025), integrating perturbational complexity mapping, optogenetic dissection, and multimodal neuroimaging to delineate core mechanisms. Key findings include: (1) thalamocortical reverberations generating conscious-state-specific EEG signatures (e.g., off-period-rebound sequences; (2) frontoparietal network failure in disorders of consciousness, characterized by collapsed information broadcasting and metabolic disruption; (3) the claustrum as a multimodal hub whose degeneration impairs perceptual coherence; and (4) septal-hippocampal-accumbens control of gamma oscillations governing state transitions. Technological innovations—from adversarial collaborations testing IIT/GNWT to taVNS-mediated circuit neuromodulation —reveal how targeted interventions can restore pathological networks. We further highlight persistent challenges: rodent-human translational gaps, unresolved theoretical contradictions, and ethical constraints in causal human manipulation. This synthesis provides an evidence-based scaffold for future consciousness research, bridging microcircuits to clinical therapeutics.

Downloads

Download data is not yet available.

References

[1] Claar, L. D., Rembado, I., Kuyat, J. R., Russo, S., Marks, L. C., Olsen, S. R., & Koch, C. (2023). Cortico-thalamo-cortical interactions modulate electrically evoked EEG responses in mice. eLife, 12, RP84630. https://doi.org/10.7554/eLife.84630

[2] Panda, R., López-González, A., Gilson, M., Gosseries, O., Thibaut, A., Frasso, G., Cecconi, B., Escrichs, A., Coma Science Group Collaborators, Deco, G., Laureys, S., Zamora-López, G., & Annen, J. (2023). Whole-brain analyses indicate the impairment of posterior integration and thalamo-frontotemporal broadcasting in disorders of consciousness. Human brain mapping, 44(11), 4352–4371. https://doi.org/10.1002/hbm.26386

[3] Nikolenko, V. N., Rizaeva, N. A., Beeraka, N. M., Oganesyan, M. V., Kudryashova, V. A., Dubovets, A. A., Borminskaya, I. D., Bulygin, K. V., Sinelnikov, M. Y., & Aliev, G. (2021). The mystery of claustral neural circuits and recent updates on its role in neurodegenerative pathology. Behavioral and brain functions : BBF, 17(1), 8. https://doi.org/10.1186/s12993-021-00181-1

[4] Leung, L. S., & Ma, J. (2022). Medial Septum Modulates Consciousness and Psychosis-Related Behaviors Through Hippocampal Gamma Activity. Frontiers in neural circuits, 16, 895000. https://doi.org/10.3389/fncir.2022.895000

[5] Liu, J., Zhan, M., Hajhajate, D., Spagna, A., Dehaene, S., Cohen, L., & Bartolomeo, P. (2025). Visual mental imagery in typical imagers and in aphantasia: A millimeter-scale 7-T fMRI study. Cortex; a journal devoted to the study of the nervous system and behavior, 185, 113–132. https://doi.org/10.1016/j.cortex.2025.01.013

[6] Yu, Y., Yang, Y., Gan, S., Guo, S., Fang, J., Wang, S., Tang, C., Bai, L., He, J., & Rong, P. (2021). Cerebral Hemodynamic Correlates of Transcutaneous Auricular Vagal Nerve Stimulation in Consciousness Restoration: An Open-Label Pilot Study. Frontiers in neurology, 12, 684791. https://doi.org/10.3389/fneur.2021.684791

[7] Qian, K., Zhang, Y., Liu, Y., Wu, S., Duan, Z., Liao, J., Luo, W., Zhou, M., Dou, X., Liu, X., & Yu, T. (2025). Dopaminergic modulation of propofol-induced activation in VLPO neurons: the role of D1 receptors in sleep-promoting neural circuits. Frontiers in neuroscience, 18, 1485873. https://doi.org/10.3389/fnins.2024.1485873

[8] Li, M., Li, W., Liang, S., Liao, X., Gu, M., Li, H., Chen, X., Liu, H., Qin, H., & Xiao, J. (2024). BNST GABAergic neurons modulate wakefulness over sleep and anesthesia. Communications biology, 7(1), 339. https://doi.org/10.1038/s42003-024-06028-5

[9] Li, J., Wu, Y., Wang, Y., Wu, Y., Hu, R., Long, S., Huang, W., Nie, L., & Wang, Z. (2025). Activation of Glutamatergic Neurons in the Supramammillary Nucleus Promotes the Recovery of Consciousness under Sevoflurane Anesthesia. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 12(21), e2406959. https://doi.org/10.1002/advs.202406959

[10] Reitz, S. L., Wasilczuk, A. Z., Beh, G. H., Proekt, A., & Kelz, M. B. (2021). Activation of Preoptic Tachykinin 1 Neurons Promotes Wakefulness over Sleep and Volatile Anesthetic-Induced Unconsciousness. Current biology : CB, 31(2), 394–405.e4. https://doi.org/10.1016/j.cub.2020.10.050

[11] Wang, L., Zhang, W., Wu, Y., Gao, Y., Sun, N., Ding, H., Ren, J., Yu, L., Wang, L., Yang, F., Xi, W., & Yan, M. (2021). Cholinergic-Induced Specific Oscillations in the Medial Prefrontal Cortex to Reverse Propofol Anesthesia. Frontiers in neuroscience, 15, 664410. https://doi.org/10.3389/fnins.2021.664410

[12] Cui, Y., Li, Y., Li, Q., Huang, J., Tan, X., & Zhan, C. A. (2024). Alpha anteriorization and theta posteriorization during deep sleep. Journal of neuroscience research, 102(4), e25325. https://doi.org/10.1002/jnr.25325

[13] Melloni, L., Mudrik, L., Pitts, M., Bendtz, K., Ferrante, O., Gorska, U., Hirschhorn, R., Khalaf, A., Kozma, C., Lepauvre, A., Liu, L., Mazumder, D., Richter, D., Zhou, H., Blumenfeld, H., Boly, M., Chalmers, D. J., Devore, S., Fallon, F., de Lange, F. P., … Tononi, G. (2023). An adversarial collaboration protocol for testing contrasting predictions of global neuronal workspace and integrated information theory. PloS one, 18(2), e0268577. https://doi.org/10.1371/journal.pone.0268577

[14] Bai, Y., Yang, L., Meng, X., Huang, Y., Wang, Q., Gong, A., Feng, Z., & Ziemann, U. (2024). Breakdown of effective information flow in disorders of consciousness: Insights from TMS-EEG. Brain stimulation, 17(3), 533–542. https://doi.org/10.1016/j.brs.2024.04.011

[15] Shaw, S. B., Nicholson, A. A., Ros, T., Harricharan, S., Terpou, B., Densmore, M., Theberge, J., Frewen, P., & Lanius, R. A. (2023). Increased top-down control of emotions during symptom provocation working memory tasks following a RCT of alpha-down neurofeedback in PTSD. NeuroImage. Clinical, 37, 103313. https://doi.org/10.1016/j.nicl.2023.103313

[16] Fallgatter, A. J., Neuhauser, B., Herrmann, M. J., Ehlis, A. C., Wagener, A., Scheuerpflug, P., Reiners, K., & Riederer, P. (2003). Far field potentials from the brain stem after transcutaneous vagus nerve stimulation. Journal of neural transmission (Vienna, Austria : 1996), 110(12), 1437–1443. https://doi.org/10.1007/s00702-003-0087-6

[17] Hakon, J., Moghiseh, M., Poulsen, I., Øland, C. M. L., Hansen, C. P., & Sabers, A. (2020). Transcutaneous Vagus Nerve Stimulation in Patients With Severe Traumatic Brain Injury: A Feasibility Trial. Neuromodulation : journal of the International Neuromodulation Society, 23(6), 859–864. https://doi.org/10.1111/ner.13148

[18] Noé, E., Ferri, J., Colomer, C., Moliner, B., O'Valle, M., Ugart, P., Rodriguez, C., & Llorens, R. (2020). Feasibility, safety and efficacy of transauricular vagus nerve stimulation in a cohort of patients with disorders of consciousness. Brain stimulation, 13(2), 427–429. https://doi.org/10.1016/j.brs.2019.12.005

[19] Yifei, W., Yi, Y., Yu, W., Jinling, Z., Weihang, Z., Shaoyuan, L. I., Mozheng, W. U., Jianghong, H. E., & Peijing, R. (2022). Transcutaneous auricular vague nerve stimulation improved brain connection activity on patients of disorders of consciousness: a pilot study. Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan, 42(3), 463–471. https://doi.org/10.19852/j.cnki.jtcm.2022.03.012

[20] Demertzi, A., Tagliazucchi, E., Dehaene, S., Deco, G., Barttfeld, P., Raimondo, F., Martial, C., Fernández-Espejo, D., Rohaut, B., Voss, H. U., Schiff, N. D., Owen, A. M., Laureys, S., Naccache, L., & Sitt, J. D. (2019). Human consciousness is supported by dynamic complex patterns of brain signal coordination. Science advances, 5(2), eaat7603. https://doi.org/10.1126/sciadv.aat7603

[21] Engemann, D. A., Raimondo, F., King, J. R., Rohaut, B., Louppe, G., Faugeras, F., Annen, J., Cassol, H., Gosseries, O., Fernandez-Slezak, D., Laureys, S., Naccache, L., Dehaene, S., & Sitt, J. D. (2018). Robust EEG-based cross-site and cross-protocol classification of states of consciousness. Brain : a journal of neurology, 141(11), 3179–3192. https://doi.org/10.1093/brain/awy251

[22] van der Lande, G. J. M., Casas-Torremocha, D., Manasanch, A., Dalla Porta, L., Gosseries, O., Alnagger, N., Barra, A., Mejías, J. F., Panda, R., Riefolo, F., Thibaut, A., Bonhomme, V., Thirion, B., Clasca, F., Gorostiza, P., Sanchez-Vives, M. V., Deco, G., Laureys, S., Zamora-López, G., & Annen, J. (2024). Brain state identification and neuromodulation to promote recovery of consciousness. Brain communications, 6(5), fcae362. https://doi.org/10.1093/braincomms/fcae362

[23] Różyk-Myrta, A., Brodziak, A., & Muc-Wierzgoń, M. (2021). Neural Circuits, Microtubule Processing, Brain's Electromagnetic Field-Components of Self-Awareness. Brain sciences, 11(8), 984. https://doi.org/10.3390/brainsci11080984

[24] Chan, R. W., Edelman, B. J., Tsang, S. Y., Gao, K., & Yu, A. C. (2024). Opportunities for System Neuroscience. Advances in neurobiology, 41, 247–253. https://doi.org/10.1007/978-3-031-69188-1_10

[25] Cogitate Consortium, Ferrante, O., Gorska-Klimowska, U., Henin, S., Hirschhorn, R., Khalaf, A., Lepauvre, A., Liu, L., Richter, D., Vidal, Y., Bonacchi, N., Brown, T., Sripad, P., Armendariz, M., Bendtz, K., Ghafari, T., Hetenyi, D., Jeschke, J., Kozma, C., Mazumder, D. R., … Melloni, L. (2025). Adversarial testing of global neuronal workspace and integrated information theories of consciousness. Nature, 642(8066), 133–142. https://doi.org/10.1038/s41586-025-08888-1

[26] Dere, D., Zlomuzica, A., & Dere, E. (2020). Channels to consciousness: a possible role of gap junctions in consciousness. Reviews in the neurosciences, /j/revneuro.ahead-of-print/revneuro-2020-0012/revneuro-2020-0012.xml. Advance online publication. https://doi.org/10.1515/revneuro-2020-0012

Downloads

Published

11-10-2025

How to Cite

Wu, J., & Li, M. (2025). Deciphering the Neural Circuits of Consciousness: An Integrative Framework from Microcircuits to Global Networks. Transactions on Materials, Biotechnology and Life Sciences, 8, 432-440. https://doi.org/10.62051/kh9n6s25