Clinical Progress of Targeted KRAS Drugs Combined with Immune Checkpoint Inhibitors in the Treatment of Pancreatic Cancer
DOI:
https://doi.org/10.62051/rq7x6r98Keywords:
Pancreatic cancer; KRAS mutation; Targeted therapy; Immune checkpoint inhibitor; Combined treatment strategy.Abstract
Kirsten Rat Sarcoma Viral Oncogene Homolog (KRAS) is one of the important drivers of pancreatic ductal adenocarcinoma. Although there has been progress in the development of targeted KRAS drugs, single-targeted therapy has limited effects due to the complexity of mutations. Immune checkpoint inhibitors have poor efficacy in common pancreatic cancer patients. Therefore, the combined treatment strategy of the two has attracted attention. By means of the targeted drugs to inhibit the tumor signaling pathway and the immune inhibitors to synergistically enhance the anti-cancer ability of the immune system, it is expected to improve the therapeutic effect. However, it faces challenges such as drug resistance and increased toxic and side effects, which urgently need to be studied and solved. Through analyzing the recent research progress, this study found that the microenvironment of pancreatic cancer is complex and immunosuppressive, and KRAS mutations will exacerbate this characteristic. By improving the function of antigen-presenting cells and reducing the influence of immunosuppressive cells, etc., the microenvironment can be improved. The combined use of KRAS inhibitors and immune checkpoint inhibitors can reverse immunosuppression, increase the infiltration of effector T cells, and improve the clinical efficacy. In the future, the combined treatment strategies developed based on relevant research are expected to bring more hope for refractory tumors.
Downloads
References
[1] Manning BD, Cantley LC. AKT/PKB signaling: navigating downstream. Cell. 2007;129:1261-74
[2] Saxton RA, Sabatini DM. mTOR Signaling in Growth, Metabolism, and Disease. Cell. 2017 Mar 9;168(6):960-976. doi: 10.1016/j.cell.2017.02.004. Erratum in: Cell. 2017 Apr 6;169(2):361-371. doi: 10.1016/j.cell.2017.03.035. PMID: 28283069; PMCID: PMC5394987.
[3] Uprety D, Adjei AA. KRAS: From undruggable to a druggable Cancer Target. Cancer Treat Rev. 2020;89:102070
[4] de Langen AJ, Johnson ML, Mazieres J, Dingemans AC, Mountzios G, Pless M, Wolf J, Schuler M, Lena H, Skoulidis F, Yoneshima Y, Kim SW, Linardou H, Novello S, van der Wekken AJ, Chen Y, Peters S, Felip E, Solomon BJ, Ramalingam SS, Dooms C, Lindsay CR, Ferreira CG, Blais N, Obiozor CC, Wang Y, Mehta B, Varrieur T, Ngarmchamnanrith G, Stollenwerk B, Waterhouse D, Paz-Ares L; CodeBreaK 200 Investigators. Sotorasib versus docetaxel for previously treated non-small-cell lung cancer with KRASG12C mutation: a randomised, open-label, phase 3 trial. Lancet. 2023 Mar 4;401(10378):733-746. doi: 10.1016/S0140-6736(23)00221-0. Epub 2023 Feb 7. PMID: 36764316.
[5] Nichols RJ, Haderk F, Stahlhut C, Schulze CJ, Hemmati G, Wildes D, Tzitzilonis C, Mordec K, Marquez A, Romero J, Hsieh T, Zaman A, Olivas V, McCoach C, Blakely CM, Wang Z, Kiss G, Koltun ES, Gill AL, Singh M, Goldsmith MA, Smith JAM, Bivona TG. RAS nucleotide cycling underlies the SHP2 phosphatase dependence of mutant BRAF-, NF1- and RAS-driven cancers. Nat Cell Biol. 2018 Sep;20(9):1064-1073. doi: 10.1038/s41556-018-0169-1. Epub 2018 Aug 13. PMID: 30104724; PMCID: PMC6115280.
[6] Dai E, Han L, Liu J, Xie Y, Kroemer G, Klionsky DJ, Zeh HJ, Kang R, Wang J, Tang D. Autophagy-dependent ferroptosis drives tumor-associated macrophage polarization via release and uptake of oncogenic KRAS protein. Autophagy. 2020 Nov;16(11):2069-2083. doi: 10.1080/15548627.2020.1714209. Epub 2020 Jan 16. PMID: 31920150; PMCID: PMC7595620.
[7] Piffoux M, Eriau E, Cassier PA. Autophagy as a therapeutic target in pancreatic cancer. Br J Cancer. 2021 Jan;124(2):333-344. doi: 10.1038/s41416-020-01039-5. Epub 2020 Sep 15. PMID: 32929194; PMCID: PMC7852577.
[8] Bhatt V, Lan T, Wang W, Kong J, Lopes EC, Wang J, Khayati K, Raju A, Rangel M, Lopez E, Hu ZS, Luo X, Su X, Malhotra J, Hu W, Pine SR, White E, Guo JY. Inhibition of autophagy and MEK promotes ferroptosis in Lkb1-deficient Kras-driven lung tumors. Cell Death Dis. 2023 Jan 26;14(1):61. doi: 10.1038/s41419-023-05592-8. PMID: 36702816; PMCID: PMC9879981.
[9] Li Y, Wu C, Chen T, Zhang J, Liu G, Pu Y, Zhu J, Shen C, Zhang Y, Zeng N, Zhang X. Effects of RNAi-mediated MUC4 gene silencing on the proliferation and migration of human pancreatic carcinoma BxPC-3 cells. Oncol Rep. 2016 Dec;36(6):3449-3455. doi: 10.3892/or.2016.5152. Epub 2016 Oct 6. PMID: 27748843.
[10] Stickler S, Rath B, Hamilton G. Targeting KRAS in pancreatic cancer. Oncol Res. 2024 Apr 23;32(5):799-805. doi: 10.32604/or.2024.045356. PMID: 38686056; PMCID: PMC11055996.
[11] Bialkowski L, Van der Jeught K, Bevers S, Tjok Joe P, Renmans D, Heirman C, Aerts JL, Thielemans K. Immune checkpoint blockade combined with IL-6 and TGF-β inhibition improves the therapeutic outcome of mRNA-based immunotherapy. Int J Cancer. 2018 Aug 1;143(3):686-698. doi: 10.1002/ijc.31331. Epub 2018 Mar 13. PMID: 29464699.
[12] Zhu S, Zhang T, Zheng L, Liu H, Song W, Liu D, Li Z, Pan CX. Combination strategies to maximize the benefits of cancer immunotherapy. J Hematol Oncol. 2021 Sep 27;14(1):156. doi: 10.1186/s13045-021-01164-5. PMID: 34579759; PMCID: PMC8475356.
[13] Dong X, Ren J, Amoozgar Z, Lee S, Datta M, Roberge S, Duquette M, Fukumura D, Jain RK. Anti-VEGF therapy improves EGFR-vIII-CAR-T cell delivery and efficacy in syngeneic glioblastoma models in mice. J Immunother Cancer. 2023 Mar;11(3):e005583. doi: 10.1136/jitc-2022-005583. PMID: 36898734; PMCID: PMC10008211.
[14] Hunsucker SA, Magarotto V, Kuhn DJ, et al. Blockade of interleukin-6 signalling with siltuximab enhances melphalan cytotoxicity in preclinical models of multiple myeloma. Br J Haematol 2011;152:579–92.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Transactions on Materials, Biotechnology and Life Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.






