Potential And Challenges Of Phage Therapy: An Alternative Strategy In The Post-Antibiotic Era

Authors

  • Xin Wang School of China Pharmaceutical University, China

DOI:

https://doi.org/10.62051/qbmd3g34

Keywords:

phage therapy; antibiotic resistance; biofilm; synthetic biology; precision medicine.

Abstract

The surge in antibiotic resistance has positioned phage therapy as a focal point in global medical research. This paper systematically explores the potential and challenges of phage therapy as an alternative strategy in the post-antibiotic era, integrating the research results from the past five years both domestically and internationally, analyzing their biological mechanisms, clinical application value, and bottlenecks for industrialization. Studies have demonstrated that phages exhibit significant advantages in treating multidrug-resistant bacterial infections, eradicating biofilms, and enabling precision medicine. However, challenges remain in addressing host specificity limitations, immunogenicity risks, and the absence of standardized regulatory frameworks. The combination of personalized phage therapy with synthetic biology technology can reduce the risk of drug resistance; however, cost-effectiveness and clinical feasibility must be balanced. In the future, we need to promote standardization and scaling-up of phage therapy through multi-disciplinary collaboration and policy innovation.

Downloads

Download data is not yet available.

References

[1] Antimicrobial Resistance Collaborators. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet, 399, 629–655. https://doi.org/10.1016/s0140-6736(21)02724-0

[2] Bispo, M., Santos, S. B., Melo, L. D. R., Azeredo, J., & van Dijl, J. M. (2022). Targeted antimicrobial photodynamic therapy of biofilm-embedded and intracellular staphylococci with a phage endolysin’s cell binding domain. Microbiology Spectrum, 10(1). https://doi.org/10.1128/spectrum.01466-21

[3] Centers for Disease Control and Prevention. (2022). COVID-19: U.S. impact on antimicrobial resistance, special report 2022. https://doi.org/10.15620/cdc:117915

[4] David B. Olawade, Oluwaseun Fapohunda, Eghosasere Egbon, Oladipo A. Ebiesuwa, Sunday Oluwadamilola Usman, Alaba O. Faronbi, Sandra Chinaza Fidelis, Phage therapy: A targeted approach to overcoming antibiotic resistance, Microbial Pathogenesis, Volume 197, 2024, 107088, ISSN 0882-4010, https://doi.org/10.1016/j.micpath.2024.107088.

[5] Hameed, I., Ahmed, A., Gandhi, S., Nassiri, N., Steinbacher, D. M., & Vallabhajosyula, P. (2024). Successful investigational phage therapy for pan-resistant bacterial mediastinitis following type II hybrid aortic arch replacement. JACC: Case Reports, 29(23), 102816. https://doi.org/10.1016/j.jaccas.2024.102816

[6] Jiaze Peng, Caopei Guo, Chengbing Yang, Lin Zhang, Fuyin Yang, Xianpeng Huang, Yang Yu, Tao Zhang, Jiachen Peng. Phage therapy for bone and joint infections: A comprehensive exploration of challenges, dynamics, and therapeutic prospects, Journal of Global Antimicrobial Resistance, Volume 39, 2024,Pages 12-21, ISSN 2213-7165https://doi.org/10.1016/j.jgar.2024.07.007.

[7] Lenneman, B. R., Fernbach, J., Loessner, M. J., Lu, T. K., & Kilcher, S. (2020). Enhancing phage therapy through synthetic biology and genome engineering. Current Opinion in Biotechnology, 68, 151–159. https://doi.org/10.1016/j.copbio.2020.11.003

[8] Lenneman, B. R., Fernbach, J., Loessner, M. J., Lu, T. K., & Kilcher, S. (2021). Enhancing phage therapy through synthetic biology and genome engineering. Current Opinion in Biotechnology, 68, 151-159. https://doi.org/10.1016/j.copbio.2020.11.003

[9] Liu, Y., Wang, Y., Walsh, T. R., Yi, L., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Z., Liu, J., & Shen, J. (2015). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. The Lancet Infectious Diseases, 16(2), 161–168. https://doi.org/10.1016/s1473-3099(15)00424-7

[10] Luong, T., Salabarria, A., & Roach, D. R. (2020). Phage therapy in the resistance era: Where do we stand and where are we going? Clinical Therapeutics, 42(9), 1659–1680. https://doi.org/10.1016/j.clinthera.2020.07.014

[11] Mihály Koncz, Tamás Stirling, Hiba Hadj Mehdi, Orsolya Méhi, Bálint Eszenyi, András Asbóth, Gábor Apjok, Ákos Tóth, László Orosz, Bálint Márk Vásárhelyi, Eszter Ari, Lejla Daruka, Tamás Ferenc Polgár, György Schneider, Sif Aldin Zalokh, Mónika Számel, Gergely Fekete, Balázs Bohár, Karolina Nagy Varga, Ádám Visnyovszki, Edit Székely, Monica-Sorina Licker, Oana Izmendi, Carmen Costache, Ina Gajic, Bojana Lukovic, Szabolcs Molnár, Uzonka Orsolya Szőcs-Gazdi, Csilla Bozai, Marina Indreas, Katalin Kristóf, Charles Van der Henst, Anke Breine, Csaba Pál, Balázs Papp, Bálint Kintses,Genomic surveillance as a scalable framework for precision phage therapy against antibiotic-resistant pathogens, Cell,Volume 187, Issue 21,2024, Pages 5901-5918.e28, ISSN 0092-8674, https://doi.org/10.1016/j.cell.2024.09.009.

[12] Nale, J. Y., & Clokie, M. R. (2021). Preclinical data and safety assessment of phage therapy in humans. Current Opinion in Biotechnology, 68, 310–317. https://doi.org/10.1016/j.copbio.2021.03.002

[13] Nicholls, P., & Aslam, S. (2022). Role of bacteriophage therapy for resistant infections in transplant recipients. Current Opinion in Organ Transplantation, 27(6), 546-553. https://doi.org/10.1097/MOT.0000000000001029

[14] Parsek, M. R., & Singh, P. K. (2003). Bacterial biofilms: An emerging link to disease pathogenesis. Annual Review of Microbiology, 57(1), 677–701. https://doi.org/10.1146/annurev.micro.57.030502.090720

[15] Schmelcher, M., Shen, Y., Nelson, D. C., Eugster, M. R., Eichenseher, F., Hanke, D. C., Loessner, M. J., Dong, S., Pritchard, D. G., Lee, J. C., Becker, S. C., Foster-Frey, J., & Donovan, D. M. (2015). Evolutionarily distinct bacteriophage endolysins featuring conserved peptidoglycan cleavage sites protect mice from MRSA infection. Journal of Antimicrobial Chemotherapy, 70(5), 1453-1465. https://doi.org/10.1093/jac/dku552

[16] Strathdee, S. A., Hatfull, G. F., Mutalik, V. K., & Schooley, R. T. (2023). Phage therapy: From biological mechanisms to future directions. Cell, 186(1), 17–31. https://doi.org/10.1016/j.cell.2022.11.017

[17] Tagliaferri, T. L., Jansen, M., & Horz, H. (2019). Fighting pathogenic bacteria on two fronts: Phages and antibiotics as combined strategy. Frontiers in Cellular and Infection Microbiology, 9. https://doi.org/10.3389/fcimb.2019.00022

[18] Tristan Ferry, Myrtille Le Bouar, Thomas Briot, Tiphaine Roussel-Gaillard, Thomas Perpoint, Sandrine Roux, Florence Ader, Florent Valour, Behrouz Kassai, Inesse Boussaha, Marietou Ndiaye, Fabien Craighero, Clément Javaux, Sébastien Lustig, Cécile Batailler, Tristan Ferry, Myrtille Le Bouar, Thomas Briot, Tiphaine Roussel-Gaillard, Thomas Perpoint, Sandrine Roux, Florent Valour, Clément Javaux, Marie Wan, Anne Conrad, Agathe Becker, Claire Triffault-Fillit, Marie Simon, Evelyne Braun, Lorena Van der Bogaart, Pierre Chauvelot, Olivier Bahuaud, Sophie Landre, Sarah Soueges, Isabelle Eberl, Karine Dallosto, Johanna Boulant, Nathalie Marrocco, Florence Ader, Sébastien Lustig, Cécile Batailler, Axel Schmidt, Fabien Craighero, Andréa Fleury, Ali El-Ameen, Arnaud Schleef, Jade Miailhes, Anne Fustier, Paul-Henri Himpens, Loïc Boussel, Marielle Buisson, Inesse Boussaha, Berhouz Kassai, Access to phage therapy at Hospices Civils de Lyon in 2022: Implementation of the PHAGEinLYON Clinic programme, International Journal of Antimicrobial Agents, Volume 64, Issue 6, 2024, 107372, ISSN 0924-8579, https://doi.org/10.1016/j.ijantimicag.2024.107372.

[19] Turner, N. A., Sharma-Kuinkel, B. K., Maskarinec, S. A., Eichenberger, E. M., Shah, P. P., Carugati, M., Holland, T. L., & Fowler, V. G. (2019). Methicillin-resistant Staphylococcus aureus: An overview of basic and clinical research. Nature Reviews Microbiology, 17(4), 203–218. https://doi.org/10.1038/s41579-018-0147-4

[20] World Health Organization. (2017). WHO publishes list of bacteria for which new antibiotics are urgently needed. News release.

[21] Zahra Moradpour, Abdollah Ghasemian, Chapter 13 - Phage therapy: Current development and future prospects, Editor(s): Ali Asghar Rastegari, Ajar Nath Yadav, Neelam Yadav, New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier, 2020, Pages 203-217, ISBN 9780128205280, https://doi.org/10.1016/B978-0-12-820528-0.00014-4.

Downloads

Published

11-10-2025

How to Cite

Wang, X. (2025). Potential And Challenges Of Phage Therapy: An Alternative Strategy In The Post-Antibiotic Era. Transactions on Materials, Biotechnology and Life Sciences, 8, 365-376. https://doi.org/10.62051/qbmd3g34