Addressing Antimicrobial Resistance: Evidence-Based Strategies And Innovations
DOI:
https://doi.org/10.62051/aa0wrb89Keywords:
Antimicrobial resistance; One Health; Environmental resistance genes; Precision medicine; AI-driven drug discovery; Global governance.Abstract
Antimicrobial resistance (AMR) is a significant global public health challenge, involving complex interactions across medical, environmental, economic, and social domains. This study integrates multidisciplinary perspectives, utilising literature reviews and case analyses to examine the current state and challenges of AMR, critique the limitations of existing strategies, and propose innovative solutions based on cutting-edge research. The study finds that environmental resistance genes, as emerging pollutants, pose underestimated threats to ecosystems and human health. Cross-disciplinary collaboration demonstrates significant advantages in AMR governance. This research proposes the establishment of a "Global Health Compact on AMR" and the integration of AI with precision medicine as innovative directions, providing theoretical support and practical solutions for global AMR governance, thereby contributing to addressing this critical issue.
Downloads
References
[1] Prestinaci, F., Pezzotti, P., & Pantosti, A. (2015). Antimicrobial resistance: a global multifaceted phenomenon. Pathogens and global health, 109(7), 309–318.
[2] World Health Organization. (2022). Antimicrobial resistance: Global report on surveillance. Geneva: WHO Press.Retrieved from https://www.who.int/publications/i/item/9789241564748
[3] Lee, A. S., de Lencastre, H., Garau, J., Kluytmans, J., Malhotra-Kumar, S., Peschel, A., & Harbarth, S. (2018). Methicillin-resistant Staphylococcus aureus. Nature reviews. Disease primers, 4, 18033.
[4] GBD 2021 Antimicrobial Resistance Collaborators (2024). Global burden of bacterial antimicrobial resistance 1990-2021: a systematic analysis with forecasts to 2050. Lancet (London, England), 404(10459), 1199–1226.
[5] World Health Organization. (2024). Antimicrobial resistance: Accelerating national and global responses. Strategic and operational priorities for the human health sector to address drug-resistant bacterial infections, 2025 - 2035. World Health Assembly.
[6] Sharma, A., Thakur, N., Thakur, A., Chauhan, A., & Babrah, H. (2023). The Challenge of Antimicrobial Resistance in the Indian Healthcare System. Cureus, 15(7), e42231.
[7] World Bank. (2022). The economics of antimicrobial resistance.
[8] Cunha C. B. (2018). Antimicrobial Stewardship Programs: Principles and Practice. The Medical clinics of North America, 102(5), 797–803.
[9] Tan, R., Kavishe, G., Luwanda, L. B., Kulinkina, A. V., Renggli, S., Mangu, C., . . . D’Acremont, V. (2024). A digital health algorithm to guide antibiotic prescription in pediatric outpatient care: a cluster randomized controlled trial. Nature Medicine, 30(1), 76-84. doi:10.1038/s41591-023-02633-9
[10] Do, N. T. T., Vu, H. T. L., Nguyen, C. T. K., Punpuing, S., Khan, W. A., Gyapong, M., . . . Wertheim, H. F. L. (2021). Community-based antibiotic access and use in six low-income and middle-income countries: a mixed-method approach. Lancet Glob Health, 9(5), e610-e619. doi:10.1016/s2214-109x(21)00024-3
[11] African Centers for Disease Control and Prevention. (2024, September 10). Antimicrobial Resistance: New Report Warns of Growing Threat [News article]. African Centers for Disease Control and Prevention. Retrieved from https://africacdc.org/news-item/antimicrobial-resistance-new-report-warns-of-growing-threat/
[12] Pillonetto, M., Jordão, R. T. S., Andraus, G. S., Bergamo, R., Rocha, F. B., Onishi, M. C., . . . de Abreu, A. L. (2020). The Experience of Implementing a National Antimicrobial Resistance Surveillance System in Brazil. Front Public Health, 8, 575536. doi:10.3389/fpubh.2020.575536
[13] Veeraraghavan, B., & Walia, K. (2019). Antimicrobial susceptibility profile & resistance mechanisms of Global Antimicrobial Resistance Surveillance System (GLASS) priority pathogens from India. The Indian journal of medical research, 149(2), 87–96.
[14] Melo, M.C.R., Maasch, J.R.M.A. & de la Fuente-Nunez, C. Accelerating antibiotic discovery through artificial intelligence. Commun Biol 4, 1050 (2021).
[15] Innocent Ayesiga, Michael Oppong Yeboah, Lenz Nwachinemere Okoro, Eneh Nchiek Edet, Jonathan Mawutor Gmanyami, Ahgu Ovye, Lorna Atimango, Bulus Naya Gadzama, Emilly Kembabazi, Pius Atwau, Artificial intelligence-enhanced biosurveillance for antimicrobial resistance in sub-Saharan Africa, International Health, 2024;, ihae081, https://doi.org/10.1093/inthealth/ihae081
[16] Smalla, K., Cook, K., Djordjevic, S. P., Klümper, U., & Gillings, M. (2018). Environmental dimensions of antibiotic resistance: assessment of basic science gaps. FEMS Microbiology Ecology, 94 (12), fiy195.
[17] Zhang, Y., Zhang, Y., Xie, J., Yuan, C., Zhu, D., & Shi, X. (2024). Vertical migration and leaching behavior of antibiotic resistance genes in soil during rainfall: Impact by long-term fertilization. Water Research, 267, 122508.
[18] Liu, Z.-T., Ma, R.-A., Zhu, D., Konstantinidis, K. T., Zhu, Y.-G., & Zhang, S.-Y. (2024). Organic fertilization co-selects genetically linked antibiotic and metal(loid) resistance genes in global soil microbiome. Nature Communications, 15(1), 5168. doi:10.1038/s41467-024-49165-5
[19] European Commission. (2022). A European One Health Action Plan against Antimicrobial Resistance. Luxembourg: Publications Office of the EU.
[20] Liu, G. Y., Yu, D., Fan, M. M., Zhang, X., Jin, Z. Y., Tang, C., & Liu, X. F. (2024). Antimicrobial resistance crisis: could artificial intelligence be the solution?. Military Medical Research, 11(1), 7.
[21] Smith, K. P., Wang, H., Durant, T. J. S., Mathison, B. A., Sharp, S. E., Kirby, J. E., . . . Rhoads, D. D. (2020). Applications of Artificial Intelligence in Clinical Microbiology Diagnostic Testing. Clinical Microbiology Newsletter, 42(8), 61-70. doi:https://doi.org/10.1016/j.clinmicnews.2020.03.006
[22] Graf, M., Sarkar, A., Svensson, C.-M., Munser, A.-S., Schröder, S., Hengoju, S., . . . Figge, M. T. (2025). Rapid detection of microbial antibiotic susceptibility via deep learning supported analysis of angle-resolved scattered-light images of picoliter droplet cultivations. Sensors and Actuators B: Chemical, 424, 136866. doi:https://doi.org/10.1016/j.snb.2024.136866
[23] Stokes, J. M., Yang, K., Swanson, K., Jin, W., Cubillos-Ruiz, A., Donghia, N. M., . . . Collins, J. J. (2020). A Deep Learning Approach to Antibiotic Discovery. Cell, 180(4), 688-702.e613. doi:10.1016/j.cell.2020.01.021
[24] Wan, F. P., Torres, M. D. T., Peng, J., & de la Fuente-Nunez, C. (2024). Deep-learning-enabled antibiotic discovery through molecular de-extinction. Nature Biomedical Engineering, 8, 854–871.
[25] Obermeyer, Z., Powers, B., Vogeli, C., & Mullainathan, S. (2019). Dissecting racial bias in an algorithm used to manage the health of populations. Science (New York, N.Y.), 366(6464), 447–453.
[26] Falkenberg, T. (2019, November). Applying a One Health approach to inter- and trans-disciplinary research on antimicrobial resistance. European Journal of Public Health, 29(Supplement_4), ckz185.798.
[27] World Health Organization. (2023, November 21). Antimicrobial resistance. World Health Organization. Retrieved from https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
[28] GAVI's challenges: funding and leadership. (2010). Lancet (London, England), 376(9751), 1438.
[29] Simmen, L. (Ed.). (2024, July 18). Building partnerships and fostering an inter - disciplinary approach in the fight against anti - microbial resistance. Oxford Global. Retrieved from https://oxfordglobal.com/discovery-development/resources/building-partnerships-fostering-an-inter-disciplinary-approach-in-the-fight-against-anti-microbial-resistance#:~:text=This%20article%20outlines%20two%20examples%20of%20partnerships%20that,to%20tackle%20the%20global%20issue%20of%20anti-microbial%20resistance
[30] Chaddad, A., Wu, Y., & Desrosiers, C. (2023, October 19). Federated Learning for Healthcare Applications. IEEE Internet of Things Journal, 11(5), 7339-7358.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Transactions on Materials, Biotechnology and Life Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.






