Personalized Neoantigen Vaccines and CAR-T Cell Therapy: A New Frontier in Cancer Immunotherapy

Authors

  • Langyan Zhu 84 ALFORD RD, Great Barrington, MA 01230, United States

DOI:

https://doi.org/10.62051/qqj4sm14

Keywords:

Neoantigen vaccine, immunotherapy, CAR-T cell therapy.

Abstract

Cancer immunotherapy has achieved groundbreaking successes with strategies like immune checkpoint inhibitors, yet many solid tumors evade immune control. Personalized neoantigen vaccines offer a new level of precision by targeting tumor-specific mutations, thereby inducing highly specific T cell responses against cancer with minimal off-target effects. Chimeric antigen receptor (CAR) T cell therapy has revolutionized treatment of hematologic malignancies, attaining remarkable remission rates, but its efficacy in solid tumors is limited by antigen heterogeneity and immunosuppressive microenvironments. Recent clinical trials of personalized neoantigen vaccines (in melanoma, pancreatic cancer, and others) demonstrate robust immunogenicity and preliminary anti-tumor activity. These findings, together with CAR-T’s potent cytotoxicity, provide a strong rationale for combined vaccine and CAR-T approaches. This paper reviews the latest clinical advancements, examines the challenges of solid tumors, proposes the synergistic integration of neoantigen vaccines with CAR-T therapy, and discusses future perspectives for this emerging frontier.

Downloads

Download data is not yet available.

References

[1] Ott, P. A., Hu, Z., Keskin, D. B., et al. An immunogenic personal neoantigen vaccine for patients with melanoma. Nature, 2017, 547(7662): 217–221. DOI: https://doi.org/10.1038/nature22991

[2] Sahin, U., Derhovanessian, E., Miller, M., et al. Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. Nature, 2017, 547(7662): 222–226. DOI: https://doi.org/10.1038/nature23003

[3] Rojas, L. A., Sethna, Z., Soares, K. C., et al. Personalized RNA neoantigen vaccines stimulate T cells in pancreatic cancer. Nature, 2023, 618(7964): 144–150. DOI: https://doi.org/10.1038/s41586-023-06063-y

[4] Chen, D. S., Mellman, I. Elements of cancer immunity and the cancer-immune set point. Nature, 2017, 541(7637): 321–330. DOI: https://doi.org/10.1038/nature21349

[5] Hilf, N., Kuttruff-Coqui, S., Frenzel, K., et al. Actively personalized vaccination trial for newly diagnosed glioblastoma. Nature, 2019, 565(7738): 240–245. DOI: https://doi.org/10.1038/s41586-018-0810-y

[6] Keskin, D. B., Anandappa, A. J., Sun, J., et al. Neoantigen vaccine generates intratumoral T cell responses in phase Ib glioblastoma trial. Nature, 2019, 565(7738): 234–239. DOI: https://doi.org/10.1038/s41586-018-0792-9

[7] Maude, S. L., Laetsch, T. W., Buechner, J., et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. New England Journal of Medicine, 2018, 378(5): 439–448. DOI: https://doi.org/10.1056/NEJMoa1709866

[8] Neelapu, S. S., Locke, F. L., Bartlett, N. L., et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. New England Journal of Medicine, 2017, 377(26): 2531–2544. DOI: https://doi.org/10.1056/NEJMoa1707447

[9] Liu, L., Qu, Y., Cheng, L., et al. Engineering chimeric antigen receptor T cells for solid tumour therapy. Clinical and Translational Medicine, 2022, 12(5): e1141. DOI: https://doi.org/10.1002/ctm2.1141

[10] Newick, K., O’Brien, S., Moon, E., et al. CAR T cell therapy for solid tumors. Annual Review of Medicine, 2017, 68: 139–152. DOI: https://doi.org/10.1146/annurev-med-062315-120245

[11] Gubin, M. M., Artyomov, M. N., Mardis, E. R., et al. Tumor neoantigens: building a framework for personalized cancer immunotherapy. Journal of Clinical Investigation, 2015, 125(9): 3413–3421. DOI: https://doi.org/10.1172/JCI80008

[12] Jurtz, V., Paul, S., Andreatta, M., et al. NetMHCpan-4.0: improved peptide-MHC class I interaction predictions integrating eluted ligand and peptide binding affinity data. Journal of Immunology, 2017, 199(9): 3360–3368. DOI: https://doi.org/10.4049/jimmunol.1700893

[13] Sarkizova, S., Klaeger, S., Le, P. M., et al. A large peptidome dataset improves HLA class I epitope prediction across most of the human population. Nature Biotechnology, 2020, 38(2): 199–209. DOI: https://doi.org/10.1038/s41587-019-0322-9

[14] Agliardi, G., Liuzzi, A. R., Hotblack, A., et al. Intratumoral IL-12 delivery empowers CAR-T cell immunotherapy in a pre-clinical model of glioblastoma. Nature Communications, 2021, 12: 444. DOI: https://doi.org/10.1038/s41467-020-20599-x

Downloads

Published

11-10-2025

How to Cite

Zhu, L. (2025). Personalized Neoantigen Vaccines and CAR-T Cell Therapy: A New Frontier in Cancer Immunotherapy. Transactions on Materials, Biotechnology and Life Sciences, 8, 155-162. https://doi.org/10.62051/qqj4sm14