Cancer Immunotherapy: Review, Advancement and Future Outlook
DOI:
https://doi.org/10.62051/q5rcfr23Keywords:
Cancer immunotherapy, immune checkpoint inhibitors, CAR-T cell therapy, monoclonal antibody, cancer vaccine.Abstract
With the continuous improvement of cancer treatment, numerous approaches have achieved remarkable results and have been implemented in clinical treatment. During the few decades, surgery, radiotherapy, chemotherapy and immunotherapy for cancer therapy were created and developed. Immunotherapy for cancer has played a significant role especially. Tumor cells are adept at employing various mechanisms to evade the attack of the immune system. Therefore, cancer is currently one of the most difficult diseases to treat. After fully understanding the immune system, scientists have focused on aspects such as immune checkpoints, antibodies, and T lymphocytes, aiming to kill tumor cells and combat cancer. Immune checkpoint inhibitors, CAR-T cells, monoclonal antibodies and cancer vaccines were invented. After reviewing a large number of materials, this article summarizes the development history of cancer immunotherapy, integrates and summarizes some representative and popular cancer immunotherapy methods for introduction, and involves the obstacles in treatment and future prospects.
Downloads
References
[1] Rui, R., Zhou, L., & He, S. Cancer immunotherapies: advances and bottlenecks. Frontiers in Immunology, 2023, 14: 1212476. DOI: https://doi.org/10.3389/fimmu.2023.1212476
[2] Sonkin, D., Thomas, A., & Teicher, B. A. Cancer treatments: Past, present, and future. Cancer Genetics, 2024, 286-287: 18-24. DOI: https://doi.org/10.1016/j.cancergen.2024.06.002
[3] Abbott, M., & Ustoyev, Y. Cancer and the Immune System: The History and Background of Immunotherapy. Seminars in Oncology Nursing, 2019, 35(5): 150923. DOI: https://doi.org/10.1016/j.soncn.2019.08.002
[4] Kennedy, L. B., & Salama, A. K. S. A review of cancer immunotherapy toxicity. CA: A Cancer Journal for Clinicians, 2020, 70(2): 86-104. DOI: https://doi.org/10.3322/caac.21596
[5] Zhang, Y., & Zheng, J. Functions of Immune Checkpoint Molecules Beyond Immune Evasion. Advances in Experimental Medicine and Biology, 2020, 1248: 201-226. DOI: https://doi.org/10.1007/978-981-15-3266-5_9
[6] Lim, S., Phillips, J. B., Madeira da Silva, L., Zhou, M., Fodstad, O., Owen, L. B., & Tan, M. Interplay between Immune Checkpoint Proteins and Cellular Metabolism. Cancer Research, 2017, 77(6): 1245-1249. DOI: https://doi.org/10.1158/0008-5472.CAN-16-1647
[7] Gubbi, S., Vijayvergia, N., Yu, J. Q., Klubo-Gwiezdzinska, J., & Koch, C. A. Immune Checkpoint Inhibitor Therapy in Neuroendocrine Tumors. Hormone and Metabolic Research = Hormon- und Stoffwechselforschung = Hormones et Metabolisme, 2022, 54(12): 795-812. DOI: https://doi.org/10.1055/a-1908-7790
[8] Tang, Q., Chen, Y., Li, X., Long, S., Shi, Y., Yu, Y., Wu, W., Han, L., & Wang, S. The role of PD-1/PD-L1 and application of immune-checkpoint inhibitors in human cancers. Frontiers in Immunology, 2022, 13: 964442. DOI: https://doi.org/10.3389/fimmu.2022.964442
[9] Li, Q., Han, J., Yang, Y., & Chen, Y. PD-1/PD-L1 checkpoint inhibitors in advanced hepatocellular carcinoma immunotherapy. Frontiers in Immunology, 2022, 13: 1070961. DOI: https://doi.org/10.3389/fimmu.2022.1070961
[10] Benmebarek, M. R., Karches, C. H., Cadilha, B. L., Lesch, S., Endres, S., & Kobold, S. Killing Mechanisms of Chimeric Antigen Receptor (CAR) T Cells. International Journal of Molecular Sciences, 2019, 20(6): 1283. DOI: https://doi.org/10.3390/ijms20061283
[11] Sun, D., Shi, X., Li, S., Wang, X., Yang, X., & Wan, M. CAR-T cell therapy: A breakthrough in traditional cancer treatment strategies (Review). Molecular Medicine Reports, 2024, 29(3): 47. DOI: https://doi.org/10.3892/mmr.2024.13171
[12] Shepard, H. M., Phillips, G. L., D Thanos, C., & Feldmann, M. Developments in therapy with monoclonal antibodies and related proteins. Clinical Medicine, 2017, 17(3): 220-232. DOI: https://doi.org/10.7861/clinmedicine.17-3-220
[13] Rita Costa, A., Elisa Rodrigues, M., Henriques, M., Azeredo, J., & Oliveira, R. Guidelines to cell engineering for monoclonal antibody production. European Journal of Pharmaceutics and Biopharmaceutics, 2010, 74(2): 127-138. DOI: https://doi.org/10.1016/j.ejpb.2009.10.002
[14] Li, F., Vijayasankaran, N., Shen, A. Y., Kiss, R., & Amanullah, A. Cell culture processes for monoclonal antibody production. mAbs, 2010, 2(5): 466-479. DOI: https://doi.org/10.4161/mabs.2.5.12720
[15] Das, P. K., Sahoo, A., & Veeranki, V. D. Recombinant monoclonal antibody production in yeasts: Challenges and considerations. International Journal of Biological Macromolecules, 2024, 266(Pt 2): 131379. DOI: https://doi.org/10.1016/j.ijbiomac.2024.131379
[16] Liu, W., Tang, H., Li, L., Wang, X., Yu, Z., & Li, J. Peptide-based therapeutic cancer vaccine: Current trends in clinical application. Cell Proliferation, 2021, 54(5): e13025. DOI: https://doi.org/10.1111/cpr.13025
[17] Li, Y., Wang, M., Peng, X., Yang, Y., Chen, Q., Liu, J., She, Q., Tan, J., Lou, C., Liao, Z., & Li, X. mRNA vaccine in cancer therapy: Current advance and future outlook. Clinical and Translational Medicine, 2023, 13(8): e1384. DOI: https://doi.org/10.1002/ctm2.1384
[18] Buonaguro, L., & Tagliamonte, M. Peptide-based vaccine for cancer therapies. Frontiers in Immunology, 2023, 14: 1210044. DOI: https://doi.org/10.3389/fimmu.2023.1210044
[19] Kaczmarek, M., Poznańska, J., Fechner, F., Michalska, N., Paszkowska, S., Napierała, A., & Mackiewicz, A. Cancer Vaccine Therapeutics: Limitations and Effectiveness-A Literature Review. Cells, 2023, 12(17): 2159. DOI: https://doi.org/10.3390/cells12172159
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Transactions on Materials, Biotechnology and Life Sciences

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.






