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Abstract. Inferring conclusions in low-template DNA (LT-DNA) profiles is a very difficult task in 
forensic genetics. The analytical threshold (AT), which distinguishes allele signals from noise, is 
the most important parameter for the quality of these profiles. This paper recounts the development 
of the AT, beginning as a fixed value and progressing to a parameter in complex probabilistic models. 
It explains how the intrinsic difficulty of LT-DNA, especially the stochastic nature, revealed the 
ineffectiveness of fixed-threshold schemes, that suffer from an information recovery vs noise 
introduction tradeoff. This challenge led to the development of the probabilistic genotyping systems 
(PGS), which evaluate evidence through continuous models, taking all signal information into 
account. While PGS has proven to be the powerful tool for the interpretation of difficult co-mingled 
DNA, it has added complexity when: software validation; inter-system variability; and court room 
communication are considered. In this review, it aims to highlight that signal interpretation can be 
redefined by next-generation sequencing (NGS) and machine learning (ML), where NGS and ML 
are transforming a view on the cellular state to bring the closer to a threshold free analysis. The 
development of the AT is indicative of the maturation of the field of trace evidence towards a greater 
focus on accuracy and serves to demonstrate that rigorous validation and standardization protocols 
are necessary to guide the appropriate use of this valuable forensic technology.  

Keywords: Forensic Genetics; Low-Template DNA (LT-DNA); Analytical Threshold (AT); 
Probabilistic Genotyping Systems (PGS); DNA Mixture Interpretation; Forensic Science. 

1. Introduction 

Forensic DNA typing technology has revolutionized crime scene investigation with the unparalleled 

power of DNA analysis for positive personal identification. The cornerstone of this field is the 

analysis of short tandem repeats (STRs), which is highly polymorphic genomic regions functioning 

as unique genetic loci [1]. The typical practice is to amplify STR loci by polymerase chain reaction 

(PCR) and analyze the fluorescently labelled products by capillary electrophoresis (CE) to produce 

an electropherogram (EPG) [2]. The reliability of the generated DNA profile depends on the correct 

interpretation of this EPG, specifically the need to differentiate true allelic signals from instrumental 

baseline noise and artifacts. 

For this purpose, laboratories define an analytical threshold (AT), the minimum signal intensity in 

relative fluorescence units (RFU) that is necessary to call a peak for an allele [3]. A low value is not 

acceptable to AT which will lead to fatal mistakes: an undershot threshold would result in noise being 

added, while an overshot threshold would lead to the loss of sensible low-level information, which is 

also known as allelic dropout [4]. Despite its efficiency with high-quality samples, this system faces 

difficulties with low-template DNA (LT-DNA), which includes both a low amount of DNA (<100-

200 pg) and degradation as well as the presence of common complex mixtures [5]. Analysis of LT-

DNA is affected by stochastic effects, with a high allelic dropout rate, and can lead to wrong 

assignment of a heterozygote genotype as a homozygote [6]. 

The challenges of LT-DNA testing revealed the inadequacy of only one fixed AT and gave rise to a 

need for the forensic community to critically review its interpretational framework. This article 

discusses the efforts to accommodate forensic challenge and the changes in the analytical concept 
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over time, moving from simple fixed-threshold models to dual-threshold structures, to the current 

step change in paradigm towards probabilistic genotyping systems (PGS) [7]. This paper will review 

the methods for defining those thresholds, the influence of international recommendations and the 

new chances and problems related to more sophisticated interpretation models. 

2. Fundamentals of STR Interpretation and the Role of the AT 

The interpretation of an STR DNA profile is a complex, multi-step exercise, and the first thing the 

analyst should do is to evaluate the electropherogram in a systematic manner. An EPG is a graph in 

which the size of DNA fragments (in the x-axis) is directly compared with RFU (on the y-axis) 

according to an internal size standard. A sound and defendable interpretation is dependent on the 

analyst's capacity to discriminate between true alleles in the blood sample vs byproducts of the 

analytical process. This requires a deep understanding of the biochemistry of PCR and the physics of 

electrophoresis. 

2.1. Signal, Artifact, and Noise in an EPG 

In an optimal EPG in single-source high-quality DNA, one or two characteristic peaks would be 

observed at each STR locus reflecting the individual’s homozygous or heterozygous genotype. 

However, EPGs in the real-world are more complex, with a combination of signals from different 

sources. The peaks of interest are the allelic peaks, which correspond to the actual alleles amplified 

from the source DNA. Their size (measured in RFU) is usually relative to the amount of input DNA, 

although not when below or far above specific template concentrations [8]. 

In addition to the true signals, EPGs harbor also artifacts (i.e. non-allelic peaks coming from the PCR 

or CE), which require an accurate interpretation in order to avoid erroneous data interpretation. Stutter 

peaks are a common artifact, presenting as small peaks that are typically one repeat unit smaller (n-

1) than the true parent allele and arise from polymerase strand slippage during amplification [9]. 

Forward stutter (n+1) may less commonly be present. Stutter filters are defined empirically (as a 

percentage change from the parent allele) at each locus to help in the calling of these artifacts. Pull-

up artifact is the other common type, it is seen in multiplex systems when high signals in one 

fluorescent dye channel are incorrectly deconvolved into another due to less than perfect spectral 

deconvolution [10]. This spectral overlap is automatically corrected mathematically by a matrix, but 

this correction may not be sufficient when the signal is very strong (often off-scale). Other signals 

not related to an allele include so-called dye blobs created by unincorporated fluorescent dye 

molecules that appear as broad peaks and also sharp, high narrow spikes as a result of instrument 

issues such as electrical surges, air bubbles or microcrystals in the polymer that usually 

simultaneously occur in all dye channels at a common position [11]. Finally, all of this is added to 

baseline noise, that is the flat random low-level signal fluctuations that arise from the CE instrument’s 

detection system, predominantly due to the photomultiplier or camera. This sampling noise is what 

the AT is explicitly meant to separate out from everything else. 

2.2. The AT as a Gatekeeper 

The AT is the main quality control device in terms of data interpretation and has an objective, 

validated threshold for role-based detection of signals that are significantly different from the 

instrumental baseline. Its purpose is well defined: to give confidence that a signal is not just white 

noise. Guidelines of major international bodies like the scientific working group on DNA analysis 

methods (SWGDAM) and the European network of forensic science institutes (ENFSI) say that any 

peak lower than the AT is not analytically reliable and should be disregarded during interpretation 

[12]. Conversely, any peak above this AT is treated as a "real" signal and has to be systematically 

classified as a true allele or a particular artifact according to its morphology, position and its ratio 

with the other peaks. 
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Generation of a laboratory-specific AT is a required component of internal validation for any DNA 

typing procedure. It should be informed by a high volume of empirical data, namely, the analysis of 

many negative controls (i.e., reagent blanks and amplification negatives) processed on a given 

instrument with a given chemistry [13]. This painstaking operation ensures that the threshold itself 

is adjusted to the peculiar noise characteristic of the entire laboratory analysis system. It is an 

important feature of these guidelines that the threshold value, AT, should be set so that it 

discriminates signal from noise only, and should never be deliberately manipulated to be higher for 

the more convenient reason that it also removes biological contaminants like stutter. This would be 

invalid scientifically as introducing artefactual sensitivity into the fundamental sensitivity of the assay 

and result in un-recoverable loss of weak but true allelic data, particularly within the context of LT-

DNA [14]. 

3. The Challenge of LT-DNA 

The well-accepted set of rules for STR interpretation, based on predicted (and predictable) signal 

behavior and obvious (and easy to discern) differences between signal and noise, is undermined by 

LT-DNA evidence. These samples are often the forensic linchpins of an investigation; minute 

amounts of biological material left behind at a crime scene, such as skin cells on a weapon grip, 

steering wheel, or item of clothing. 

3.1. Inherent Characteristics of LT-DNA 

Key features in several aspects, the LT-DNA samples have certain characteristics that in synergy are 

complicating the analysis. The reasons are first their minuscule sample size (below the optimization 

input range (approximately <100–200 pg DNA, equivalent of DNA from < 30 cells) [15]. At this 

degree, only a very few template molecules of each allele are incorporated into the PCR. Second, 

such samples are commonly highly degraded. Both hydrolytic and oxidative damage to DNA are 

generated in the environment by heat, humidity, UV radiation, and microbes, resulting in random 

strand breaks. As PCR is able to amplify only intact DNA segments between the primer binding sites, 

this fragmentation leads to an increased preferential amplification of smaller STR loci, and thereby 

the stepwise incomplete amplification of larger loci, resulting in the characteristic "ski-slope" 

appearance of the EPG and potential for multiple alleles failing to be amplified at loci. Finally, most 

trace samples comprise DNA mixtures of two or more individuals. In an LT-DNA scenario, 

estimating the number of contributors (NOC) is particularly challenging, yet it is a prerequisite for 

an accurate profile deconvolution. Their DNA may vary also severely out of proportions, 

complicating the interpretation. 

3.2. Stochastic Effects in LT-DNA Analysis 

When the number of template DNA molecules is very low, the initial cycles of PCR, where the 

template is copied, are subject to significant random sampling variation. This is because the 

distribution of individual DNA molecules into the PCR tube approximates a Poisson distribution. The 

resulting amplification imbalances are known collectively as stochastic effects, which are the 

hallmark of LT-DNA profiles [16]. The most critical of these is allelic dropout, where one of the 

alleles at a heterozygous locus, by chance, is not sampled into the PCR reaction or fails to amplify to 

a detectable level. This causes a true heterozygote to be misinterpreted as a homozygote and can lead 

to false exclusions of true contributors. 

Likewise, severe peak height imbalance can occur, resulting in extremely low peak height ratios 

(PHRs) where the two alleles of a heterozygote, expected to amplify to near equal amounts (PHR ~ 

1.0), are highly imbalanced (e.g., PHR < 0.60) due to one allele’s having been preferentially amplified 

in the early cycles. This complicates interpretation of mixtures where relative peak heights are used 

to distinguish contributors. Analysts can also observe allelic drop-in (the presence of transient low-

level alleles not from the original sample) as well. These are frequently attributed to trace levels of 

contamination from laboratory consumables or the environment which are magnified to traceable 
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levels by the high sensitivity protocols (e.g., augmented numbers of PCR cycles) involved in LT-

DNA amplification [14]. These issues, especially the high rate of dropout and drop-in, indicated that 

a single analytic cut-point produced a very inadequate basis for sound interpretation. 

4. The Evolution of Threshold-Based Interpretation 

In response to the evident and immediate dangers associated with misinterpreting stochastic effects, 

the forensic community has established more sophisticated interpretation frameworks that transcend 

a singular analytical threshold. This development signifies an important recognition that not every 

detectable signal possesses an identical level of certainty. 

4.1. Methodologies for Establishing the AT 

It is with the aim of striking a balance between sensitivity and specificity that laboratories have used 

various empirical approaches to establish these cut off points for the AT. The two most typical 

methodologies involve statistical analysis of negative controls and the examination of DNA dilution 

series. One is to analyze a large quantity of negative control samples, and checking the RFU of all 

baseline noise peaks. The AT is then fixed “in the noise” such that it significantly exceeds this noise, 

for instance by the average of the noise plus 10x the standard deviation (SD) or a multiple (e.g. 2x) 

of the highest noise peak ever observed [17]. This method is perfectly suited to the objective of 

mitigating false positive signals due to instrumental noise. The second approach consists of 

analyzing known levels of DNA at lower and lower concentration. When plotted as RFUs versus the 

amount of DNA input, the signal strength at the limit of detection (LoD) can be visually observed 

and a threshold can be set (AT) that corresponds to the lower limits of being able to reliably generate 

signal from known allele(s) [18]. This rather complex regression-based strategy would be 

advantageous in examining the entire process, however, and relies heavily on accurate quantification. 

The fundamental principles and trade-offs of these approaches are enumerated in Table 1. 

Table 1. Comparison of Methodologies for Determining AT. 

Method 

Category 
Principle Required Data Advantages 

Limitations & 

Disadvantages 

Based on 

Negative 

Controls 

(Statistical 

Method) 

Sets AT based 

on the statistical 

distribution of 

baseline noise in 

multiple 

negative control 

samples (e.g., 

mean + 3-10x 

SD of noise, or a 

multiple of the 

highest observed 

noise peak). 

Data from numerous 

negative control 

(reagent blank, 

amplification negative) 

electropherograms. 

Simple to 

calculate; 

statistically clear 

rationale; 

directly reflects 

instrument and 

reagent 

background 

noise. 

Ignores that noise 

levels can increase 

with high DNA 

concentration; may 

be too conservative 

(low) for high-

template samples; 

can be skewed by 

rare, high-noise 

events. 

Based on 

Positive 

Samples 

(Regression 

Method) 

Establishes a 

linear regression 

model between 

known DNA 

input quantity 

and resulting 

RFU signal 

intensity from a 

dilution series of 

a standard 

sample. 

Data from precisely 

quantified and serially 

diluted standard DNA 

sample 

electropherograms. 

Reflects the 

dynamic 

performance of 

the entire 

analytical 

process (incl. 

PCR); based on 

true allele 

signals rather 

than just noise. 

More complex and 

costly to perform; 

requires highly 

accurate DNA 

quantification; 

relationship is non-

linear at very low 

(stochastic) and very 

high (saturation) 

concentrations. 
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Both approaches are correct, but both illustrate one major question: not all types of samples may be 

served with one, set AT. For example, baseline of high-quantity DNA often is “noisier” than that of 

the negative control, which indicates that AT based on negatives alone may be too low for high-

template samples. Furthermore, modifying an analytical parameter to enhance sensitivity, such as 

increasing the number of PCR cycles, will amplify both signal and noise. Consequently, such a 

change mandates a complete re-validation of the process, which typically includes establishing a 

higher AT. 

4.2. Introduction of the Stochastic Threshold (ST) 

The most serious deficiency of the AT is that it can only report the probability of a signal being noise, 

not the probability of a 'true allele' not being observed as dropout. To address this particular form of 

risk, the idea of the stochastic threshold (ST) was proposed. The ST is a higher RFU value, empirically 

determined by a laboratory, above which allelic dropout is considered highly unlikely [19]. While its 

definition is primarily based on observing dropout events in known heterozygous samples, its 

practical application is to provide greater confidence in genotyping calls. Specifically, it allows an 

analyst to more reliably interpret a single detected peak above the ST as a true homozygous genotype, 

because the risk of its heterozygous partner having dropped out is minimal. 

The ST is also empirically determined, usually by analyzing multiple samples that are known to be 

heterozygous at several different concentrations within the stochastic region [20]. The analyst notes 

all areas of dropout and calls the peak height of the remaining partner allele. The ST is then placed 

above the maximum surviving-peak high across all dropouts. The introduction of the ST produced a 

double-threshold setup with three interpretational zones in the EPG. The lower band of the AT was 

designated as unreliable noise. There are signals that are not unique above the ST that can be used 

for genotyping. The most difficult to map region was the “gray zone” between AT and ST. A peak 

in this intermediate range is a legitimate allele, but it occurs in the region where the stochastic 

processes predominate. Thus, a single peak in this region cannot be confidently designated as a true 

homozygote. This interpretational indeterminacy frequently necessitated the application of more 

conservative statistical measures (e.g., combined probability of inclusion/exclusion) which leave 

most of the strength of the profile unsampled. Although the new legislation refined the AT/ST, the 

binary approach, and the loss of information that it entailed, opened the door to a new way of thinking. 

5. Paradigm Shift: PGS 

The inherent limitations that force an all-or-nothing decision for each peak in fixed-threshold methods 

catalyzed a shift in paradigm. Therefore, the PGS have emerged. It is this system that replaces the 

binary decision rule with integrated continuous statistical models for evaluating the DNA evidence, 

thus changing the role and importance of thresholds. 

5.1. From Binary Decisions to Continuous Models 

Traditional STR interpretation as implemented is a semi-continuous approach as it takes into account 

the qualitative presence of alleles (once cleared above the AT) but largely ignores the richer 

quantitative information contained in peak heights, apart from simple PHR calculations and a few 

other nearby retention/enrichment operations. PGS, on the other hand, is based on a completely 

continuous model [21]. Rather than posing the yes/no question—"Is this peak an allele?" PGS asks a 

probabilistic question: "Based on a set of assumptions about the number of contributors, what is the 

probability of observing the entire electropherogram, including all of its quantitative differences, if 

a certain individual's DNA were in the mixture? " 

The PGS software involves computation-intensive algorithms like Markov Chain Monte Carlo 

(MCMC) which enable the search of the large space of all possible sets of genotypes that would 

account for the observed EPG [22]. These biological models factor in the likelihoods of a number of 

phenomena given the validation data of the laboratory, including allelic dropout, allelic drop-in, 
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variable stutter ratios, and peak height variation. By treating the presence of these events as series of 

continuous probabilities, rather than as hard filters, PGS can utilize all of the quantitative data in a 

profile—most importantly, data from peaks below the traditional AT. The AT can be used as in the 

past as an initial data reduction filter removing the most blatant instrumental noise, but not as a 

definitive veto for a candidate to be included in the overall statistical evaluation. 

The result of a PGS test is also not a "hit" or "non-hit," but rather a likelihood ratio (LR) value. The 

LR is a robust measure that quantifies the weight of evidence by comparing the probability of 

observing the evidence under two competing propositions: that of the prosecution (Hp: the suspect is 

a source of the evidence) and that of the defense (Hd: an unknown, unrelated individual is the source 

of the evidence). For example, an LR of 10,000 means that the observed DNA evidence is 10,000 

times more likely under the hypothesis that the suspect contributed DNA than the hypothesis that an 

unknown, unrelated individual contributed DNA. This enables a quantitative statement about the 

quality of evidence also in complex and low-level samples. 

5.2. Implications and New Challenges 

It is PGS that has made it possible to interpret substantially more complex and low-level DNA 

mixtures in the last years than it was feasible in the past and to save evidence that would have been 

declared inconclusive in old, threshold-based methods. But this awesome new tool comes with its 

own set of big problems. Internal validation of a PGS software is at least an order of magnitude 

more difficult than the validation of an AT. Labs should perform a thorough set of performance tests 

that are representative of their specific laboratory sample types (contributor numbers, mixture ratios, 

template amounts, and degradation levels) to help define the limits where the results are empirically 

supported and accurate [23]. 

Additionally, there is inter-software variability for the same reason that various PGS software (e.g., 

STRmix™, TrueAllele®) apply different mathematical modeling and algorithms [24]. This may in 

turn result in different LR outcomes for the same evidence file, and for the same value the differences 

can be orders of magnitude, a fact that has been a cause for considerable dispute in courts. The 

proprietary and often opaque nature of the algorithms has also prompted the "black box" argument in 

the courtroom, where criminal defense lawyers argue that if they cannot thoroughly cross-examine 

the source code and logic of the software, it runs afoul on a defendant's constitutional right to 

confront the evidence against them. Finally, the large numbers needed to communicate the 

implications of a large LR to lay people, are a considerable challenge, with a significant risk of 

misunderstanding; the "prosecutor's fallacy". As a consequence, the switch to PGS has shifted the 

'hot seat' away from validating a 'yes/no' threshold to validate and transparently use an entire complex 

bio-statistical system. A summary of two major platforms for PGS is listed in Table 2. 
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Table 2. Comparative Analysis of Mainstream Probabilistic Genotyping Systems (STRmix™ vs. 

TrueAllele®). 

Feature STRmix™ TrueAllele® 
Key Differences & 

Judicial Impact 

Underlying 

Statistical 

Model 

Bayesian methods, 

utilizing Markov 

Chain Monte Carlo 

(MCMC) 

algorithms. 

Bayesian methods, 

also utilizing 

MCMC 

algorithms. 

While both are Bayesian, 

specific model parameters 

(e.g., for stutter, 

degradation) and prior 

assumptions differ, which 

can lead to different LR 

results from the same data. 

Data 

Utilization 

Employs a fully 

continuous model, 

using all 

quantitative peak 

height and area 

information. 

Also employs a 

fully continuous 

model, using all 

quantitative 

information. 

Both models maximize data 

usage over semi-continuous 

methods. Differences lie in 

how they weigh and model 

the quantitative data. 

Output 

A Likelihood Ratio 

(LR) representing 

the weight of 

evidence for 

competing 

propositions. 

A Likelihood 

Ratio (LR) 

representing the 

weight of 

evidence. 

The LR is the standard 

output, but the numerical 

value can differ 

significantly between 

systems for the same case, 

potentially causing 

confusion in court. 

Source Code 

Accessibility 

Generally made 

available to defense 

experts under 

protective court 

orders for case-

specific review. 

Proprietary and 

generally not 

made available for 

external review. 

This is a major point of 

legal contention. The "black 

box" nature of proprietary 

code raises defense 

challenges regarding due 

process and the right to 

confront evidence. 

Courtroom 

Admissibility 

Widely validated 

and admitted in 

courtrooms globally. 

Also widely 

validated and 

admitted in courts, 

primarily in the 

United States. 

Both have extensive 

admissibility histories, but 

cases with conflicting 

results between platforms or 

challenges to validation 

have highlighted the 

complexity of their use as 

evidence. 

 

6. Future Horizons: Redefining the Signal 

The evolution of DNA interpretation is not over. Emerging technologies are poised to once again 

redefine the fundamental concepts of signal, noise, and thresholds in forensic genetics. 
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6.1. Next-Generation Sequencing (NGS) 

Next-generation sequencing (NGS), or massively parallel sequencing (MPS), moves analysis beyond 

fragment length to the direct reading of DNA base sequences. In the context of STR analysis, NGS 

has several pluses. NGS can identify isoalleles (alleles of the same length but with different internal 

sequences) and detect single nucleotide polymorphisms (SNPs) within and flanking the STR regions. 

This additional genetic information greatly enhances the discriminatory power of the assay and 

significantly aids in the deconvolution of complex mixtures. 

Importantly, signal strength on NGS is not measured in RFU, but sequence reads. The criterion of 

an intensity-based AT is outdated. New quality metrics and filters appropriate for the handling of 

sequencing errors and other artifacts are needed, but NGS data is inherently digital and discrete, 

providing a distinct framework for statistical analysis [25]. The technology may compensate for a 

number of the stochastic effects observed with CE by enabling better amplification and/or filtering 

of PCR stutter and other artifacts. 

6.2. Machine Learning and Artificial Intelligence 

Machine learning (ML) or Artificial intelligence (AI) is the next level. These technologies open the 

way for end-to-end automatic self-learning interpretation systems that may move beyond any human-

based rules and thresholds. An ML model might be trained on thousands of EPGs to capture the 

subtle, multi-dimensional pattern that differentiates genuine alleles from a range of artifacts, e.g. 

complex stutter, pull-up and baseline noise [26]. 

A system might evolve in which signals are variably interpreted in a context-dependent manner in 

adopting the peak or no-peak classification, in which the "threshold" for declaring a peak positive is 

not a hard RFU number but a probability density score based on consideration of the entire profile. 

While the opportunity is massive, the use of ML in the justice system will face even more “black 

box” scrutiny than PGS. For their introduction in casework the question of transparency, fairness and 

explainability of such algorithms will have to be tackled. 

7. Conclusion 

The evolution of analytical threshold in forensic DNA analysis represents the microcosm of the 

development pathway of forensic science toward more precise measurement of information-rich 

evidence. Although originally a simple, necessary tool, the fixed AT was inappropriate for LT-DNA 

samples, since its use led to a conflict between loss of information and noise inclusion that could not 

be resolved. This limitation prompted a major paradigm change towards PGS in an attempt to 

incorporate the strengths of probabilistic reasoning instead of binary rules which utilizes a continuous 

model to weigh all data statistically and express uncertainty through the concept of a LR. In this 

construct, the AT was relegated from a critical gatekeeper to a trivial parameter, refocusing quality 

assurance efforts from verifying a simple line to verifying a complex interpreter. From here on, the 

quest is on to reach novel horizons, in which the encounter between technologies such as next-

generation sequencing and machine learning might open up the future to an intelligent, possibly 

threshold-free, interpretation. But the real challenges remain the same, no matter the technology: that 

the best methods are thoroughly validated but also transparent and communicated effectively to the 

justice system. The ultimate goal is not to search for a perfect threshold, but rather to develop systems 

that can provide the most faithful and robust representation and communication of uncertainty in trace 

evidence analysis. 
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